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This article examines the elastic equilibrium of a circular plate with a central 
crack when radial displacements distributed in accordance with an elliptic law are assigned 
on the boundary of the plate. The problem is reduced to a singular integral equation. 
Numerical and analytical solutions are obtained and compared with one another. We deter- 
mine the dependence of the stress-intensity factor at the crack tip on the biaxial loading 
parameter. As the latter, we take the ratio of the displacements along the principal axes 
of deformation of the plate. The possibility of stable crack growth is established, and 
practical applications of the results are noted. 

i. Formulation of the Problem. The formulation of the problem first of all reflects 
the need to develop a mathematical model to interpret experimental results obtained on 
special equipment which makes it possible to realize two-dimensional tension of circular 
plate specimens with prescribed radial displacements. Such an approach is promising from 
the viewpoint of practical considerations. In fact, if a crack forms in a structure, there 
is almost always the possibility of measuring the displacement at the boundary of a certain 
relatively small region surrounding the crack. In connection with this, it is of interest 
to examine the problem of the theory of elasticity for a circular plate of radius R with a 
central crack of length 2~, with the radial displacements vp assigned at the boundary of 
the plate - the circle L 0 (Fig. I). 

2. Integral Equation of the Problem. A problem formulated on the basis of [i] 
reduces to the solution of a singular integral equation relative to the unknown function 
g(t), which is proportional to the derivative of the displacements on the edges of the 
crack: 
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Here, # is the shear modulus; ~ = 3 - 4v forplane strain and ~ = (3 - v)/(l + v) for a 

generalized plane stress state; v is the Poisson's ratio. 
We choose the following as the distribution law for the radial displacements on the 

boundary of the circle 

~ ( O ) - ~ v l c o s ~ O ' f f v ~ s  in20 ( 2 . 4 )  
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(v I and v 2 are the radial displacements along the x- and y-axes, respectively (see Fig. i). 
This choice of displacements leads to a situation whereby the deformed contour of the plate 
acquires a shape which is close to elliptical for small v I and v 2. 

With allowance for (2.4), function (2.3) takes the form 

f (0) - -  21t v, -7[- ~ (1 J- b cos 20 + 2ib  sin 20), 
- B 2 i 

w h e r e  b = (v 1 - -  v~) / (v l  + v~) o r  b = (b~ - -  l ) / ( b l  + i ) ;  bl = vi /v2.  I n s e r t i n g  ( 2 . 5 )  
and integrating, we find that 
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3. Numerical Solution We obtain the solution of singular integral equation (2.!) by 
the numerical method proposed in [2]. Considering that g(t) = -g(-t) by virtue of the 
symmetry of the problem, we write equation (2.1) for the range of integration [0, ~] as 
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Making the substitution of variables t = IT, t o : IT 0, 0<% z0< I, in (3.1)~ we have 
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The value r = i in Eq. (3.2) corresponds to the position of the crack tip, while r = 0 
corresponds to the center of the crack. It is not hard to show that the unknown function 
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g(t) is purely imaginary for the given problem. We represent it in the form 

g (t) = - ~ ~) (3.3) 

(u(r) is a new unknown function). Inserting (3.3) into (3.2) and following the procedures 
described in [2], we approximate singular integral equation (3.2) by a system of linear 
algebraic equations relative to u m = U(rm): 
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Using formulas from [3] which connect the function g(t) with the stress-intensity 
factor at the crack tip kl, we find that 

k~ 3/@ (• -- t) V~2z~Xu (1). 
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The value u(1) = u~ entering into (3.5) is determined directly from the solution of system 
(3.4). This is one of the advantages of the the numerical approach we are using. 

4. Approximate Analytical Solution. Together with a numerical solution, we obtain an 
approximate analytical solution to Eq. (2.1) with small values of A = 2/R (the ratio of the 
half-length of the crack to the radius of the circle). We keep terms whose order does not 
exceed A z in the expansion of the kernel of the equation in powers of A, and we refer the 
length to 2 in (2.1). We then obtain the approximate equation 
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Having completed integration in (4.5), we have 
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Solving (417), we have A = --=ai(c q- 7/4)/[2(I + ~L2)], and, using (4.6), we obtain 

i t  r 
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(terms whose order is no greater than k 2 are kept in the bracket). 
If we use formulas found in [3] to connect the function g(t) with the stress-inten- 

sity factor at the crack tip kl, we find that 

( 4 . 9 )  

5. Numerical Results. Calculations were performed in accordance with the algorithm 
described in Part 3 for ~ ~ (3--v)/(i ~ ~), ~ = 0.3. The error, no greater than 0.19 in 
any of the cases, was checked by comparing the results of calculations performed with dif- 
ferent degrees of accuracy of algebraic approximation of the integral equation - which was 
determined by the order n of corresponding system (3.4). For example, data is shown in 
Table I for b1~ul/v2 =0.5, %~I/R ~0.5. Thus, use of the given numerical method ensures 
very rapid convergence of the results. 

Figure 2 and Table 2 show the dependence of the dimensionless stress-intensity factor 
on the biaxial-loading parameter b I = vl/v 2 for different relative crack dimensions. It 
should be noted that that the minimum dependence of the dimensionless stress-intensity 
factor on the parameter b I is seen at ~ = ~/R = 0.77. In this case, with a change in b I 
from 0 to ~, the quantity k11/r-~(• I)/[2~(ui + v~)] changes from 0.825 to 0.816. 

Figure 3 shows the dependence of the limiting displacements on relative crack size 
for different values of b I. Here, vl, v2 and K e are the critical values of vl, v2, and k I. 
It can be seen that with an increase in b I the tendency for stable crack growth to occur 
decreases. Table 3 shows results of calculations performed by Eq. (4.9) for g = (3 - 

u)/(l + u), u = 0.3, and b I = 0.5. Comparison of this data with the numerical results in 
Table 2 shows that Eq. (4.9) is satisfactorily accurate at k < 0.5. 
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